curvature$18241$ - vertaling naar grieks
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

curvature$18241$ - vertaling naar grieks

POINT AT A DISTANCE FROM THE CURVE EQUAL TO THE RADIUS OF CURVATURE LYING ON THE NORMAL VECTOR
Center of Curvature; Centre of curvature
  • A concave mirror with light rays
  • Center of curvature

curvature      
n. κυρτότης, κυρτότητα, καμπυλότης, καμπυλότητα, σφαιρικότητα, κύρτωση, καμπύλωμα
space time         
  • '''here''']].
  • Figure 2–9. In this spacetime diagram, the 1 m length of the moving rod, as measured in the primed frame, is the foreshortened distance OC when projected onto the unprimed frame.
  • Figure 4-4. Dewan–Beran–Bell spaceship paradox
  • Figure 4–5. The curved lines represent the world lines of two observers A and B who accelerate in the same direction with the same constant magnitude acceleration. At A' and B', the observers stop accelerating. The dashed lines are lines of simultaneity for either observer before acceleration begins and after acceleration stops.
  • Figure 3–9. Energy and momentum of light in different inertial frames
  • Figure 5–9. (A) Cavendish experiment, (B) Kreuzer experiment
  • Figure 3–5. Derivation of Lorentz Transformation
  • Figure 5–3. Einstein's argument suggesting gravitational redshift
  • Figure 5–2. Equivalence principle
  • Figure 3–1. '''Galilean''' Spacetime and composition of velocities
  • Figure 2–3. (a) Galilean diagram of two frames of reference in standard configuration, (b) spacetime diagram of two frames of reference, (c) spacetime diagram showing the path of a reflected light pulse
  • '''Click here to animate.''']]
  • Figure 5-11. Gravity Probe B confirmed the existence of gravitomagnetism
  • Figure 2-11. Spacetime explanation of the twin paradox
  • Figure 3–4. Lorentz factor as a function of velocity
  • Figure 1–4. Hand-colored transparency presented by Minkowski in his 1908 ''Raum und Zeit'' lecture
  • Figure 2–4. The light cone centered on an event divides the rest of spacetime into the future, the past, and "elsewhere"
  • Figure 1-1.  Each location in spacetime is marked by four numbers defined by a [[frame of reference]]: the position in space, and the time (which can be visualized as the reading of a clock located at each position in space). The 'observer' synchronizes the clocks according to their own reference frame.
  • 1=''2'' and ''3''}} really represent tidal effects resulting from their differential attraction by mass&nbsp;''1''. (iii) A third reporter, trained in general relativity, knows that there are, in fact, no forces at all acting between the three objects. Rather, all three objects move along [[geodesics]] in spacetime.</ref>
  • Figure 3–2. Relativistic composition of velocities
  • Figure 3-10. Relativistic conservation of momentum
  • Figure 3–8. Relativistic spacetime momentum vector
  • Figure 2–6. Animation illustrating relativity of simultaneity
  • tanh]]). Sinh is red, cosh is blue and tanh is green.
  • Figure 2–7. (a) Families of invariant hyperbolae, (b) Hyperboloids of two sheets and one sheet
  • Figure 3–6. Spacetime diagram of relativistic Doppler effect
  • Figure 2–1. Spacetime diagram illustrating two photons, A and B, originating at the same event, and a slower-than-light-speed object, C
  • Figure 3-3. Spacetime diagrams illustrating time dilation and length contraction
  • Figure 2–8.  The invariant hyperbola comprises the points that can be reached from the origin in a fixed proper time by clocks traveling at different speeds
  • Figure 5–7. Origin of gravitomagnetism
  • Figure 2-2. Galilean diagram of two frames of reference in standard configuration
  • Figure 5-5. Contravariant components of the stress–energy tensor
  • Figure 3–7. Transverse Doppler effect scenarios
  • Figure 2–5. Light cone in 2D space plus a time dimension
MATHEMATICAL MODEL COMBINING SPACE AND TIME
Space-time interval; Spacetime interval; Time-space continuum; Space-like; Timelike; Spacelike; Light-like; Space-time continuum; Time-like; Space and time; Spacetime continuum; Neo newtonian; Neo-newtonian; Space/time continuum; Spacetime Interval; Space/time; Space time continueum; Interval spacetime; Space-time distance; Space time continuum; Invariant interval; Space time; Time space continuum; Time- space curvature; Space-Time; Space Time Continuum; Spacetimes; Lorentz interval; Time and space; Time and Space; Space–time; Space-time; Space-Time Continuum; Space–time continuum; Spacetime geometry; Draft:Spacetime; Spatiotemporal; Space Time; Spacetime (mathematics)
χωρόχρονος

Definitie

curvature
The curvature of something is its curved shape, especially when this shape is part of the circumference of a circle. (TECHNICAL)
...the curvature of the earth...
N-UNCOUNT: oft N of n

Wikipedia

Center of curvature

In geometry, the center of curvature of a curve is found at a point that is at a distance from the curve equal to the radius of curvature lying on the normal vector. It is the point at infinity if the curvature is zero. The osculating circle to the curve is centered at the centre of curvature. Cauchy defined the center of curvature C as the intersection point of two infinitely close normal lines to the curve. The locus of centers of curvature for each point on the curve comprise the evolute of the curve. This term is generally used in physics regarding the study of lenses and mirrors (see radius of curvature (optics)).

It can also be defined as the spherical distance between the point at which all the rays falling on a lens or mirror either seems to converge to (in the case of convex lenses and concave mirrors) or diverge from (in the case of concave lenses or convex mirrors) and the lens/mirror itself.